Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R691-R700, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073900

RESUMO

The free fatty acid receptor 3 (FFA3) is a nutrient sensor of gut microbiota-generated nutrients, the short-chain fatty acids. Previously, we have shown that FFA3 is expressed in ß-cells and inhibits islet insulin secretion ex vivo. Here, we determined the physiological relevance of the above observation by challenging wild-type (WT) and FFA3 knockout (KO) male mice with 1) hyperglycemia and monitoring insulin response via highly sensitive hyperglycemic clamps, 2) dietary high fat (HF), and 3) chemical-induced diabetes. As expected, FFA3 KO mice exhibited significantly higher insulin secretion and glucose infusion rate in hyperglycemic clamps. Predictably, under metabolic stress induced by HF-diet feeding, FFA3 KO mice exhibited less glucose intolerance compared with the WT mice. Moreover, similar islet architecture and ß-cell area in HF diet-fed FFA3 KO and WT mice was observed. Upon challenge with streptozotocin (STZ), FFA3 KO mice initially exhibited a tendency for an accelerated incidence of diabetes compared with the WT mice. However, this difference was not maintained. Similar glycemia and ß-cell mass loss was observed in both genotypes 10 days post-STZ challenge. Higher resistance to STZ-induced diabetes in WT mice could be due to higher basal islet autophagy. However, this difference was not protective because in response to STZ, similar autophagy induction was observed in both WT and FFA3 KO islets. These data demonstrate that FFA3 plays a role in modulating insulin secretion and ß-cell response to stressors. The ß-cell FFA3 and autophagy link warrant further research.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Células Secretoras de Insulina/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Apoptose , Autofagia , Glicemia , Proliferação de Células , Privação de Alimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Resistência à Insulina , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...